// Written in the D programming language. /** * Builtin mathematical intrinsics * * Source: $(DRUNTIMESRC core/_math.d) * Macros: * TABLE_SV = * * $0
Special Values
* * NAN = $(RED NAN) * SUP = $0 * POWER = $1$2 * PLUSMN = ± * INFIN = ∞ * PLUSMNINF = ±∞ * LT = < * GT = > * * Copyright: Copyright Digital Mars 2000 - 2011. * License: $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0). * Authors: $(WEB digitalmars.com, Walter Bright), * Don Clugston */ module core.math; public: @nogc: /*********************************** * Returns cosine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH cos(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes) ) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ real cos(real x) @safe pure nothrow; /* intrinsic */ /*********************************** * Returns sine of x. x is in radians. * * $(TABLE_SV * $(TR $(TH x) $(TH sin(x)) $(TH invalid?)) * $(TR $(TD $(NAN)) $(TD $(NAN)) $(TD yes)) * $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)) * $(TR $(TD $(PLUSMNINF)) $(TD $(NAN)) $(TD yes)) * ) * Bugs: * Results are undefined if |x| >= $(POWER 2,64). */ real sin(real x) @safe pure nothrow; /* intrinsic */ /***************************************** * Returns x rounded to a long value using the current rounding mode. * If the integer value of x is * greater than long.max, the result is * indeterminate. */ long rndtol(real x) @safe pure nothrow; /* intrinsic */ /***************************************** * Returns x rounded to a long value using the FE_TONEAREST rounding mode. * If the integer value of x is * greater than long.max, the result is * indeterminate. */ extern (C) real rndtonl(real x); /*************************************** * Compute square root of x. * * $(TABLE_SV * $(TR $(TH x) $(TH sqrt(x)) $(TH invalid?)) * $(TR $(TD -0.0) $(TD -0.0) $(TD no)) * $(TR $(TD $(LT)0.0) $(TD $(NAN)) $(TD yes)) * $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no)) * ) */ @safe pure nothrow { float sqrt(float x); /* intrinsic */ double sqrt(double x); /* intrinsic */ /// ditto real sqrt(real x); /* intrinsic */ /// ditto } /******************************************* * Compute n * 2$(SUPERSCRIPT exp) * References: frexp */ real ldexp(real n, int exp) @safe pure nothrow; /* intrinsic */ unittest { static if (real.mant_dig == 113) { assert(ldexp(1, -16384) == 0x1p-16384L); assert(ldexp(1, -16382) == 0x1p-16382L); } else static if (real.mant_dig == 106) { assert(ldexp(1, 1023) == 0x1p1023L); assert(ldexp(1, -1022) == 0x1p-1022L); assert(ldexp(1, -1021) == 0x1p-1021L); } else static if (real.mant_dig == 64) { assert(ldexp(1, -16384) == 0x1p-16384L); assert(ldexp(1, -16382) == 0x1p-16382L); } else static if (real.mant_dig == 53) { assert(ldexp(1, 1023) == 0x1p1023L); assert(ldexp(1, -1022) == 0x1p-1022L); assert(ldexp(1, -1021) == 0x1p-1021L); } else assert(false, "Only 128bit, 80bit and 64bit reals expected here"); } /******************************* * Returns |x| * * $(TABLE_SV * $(TR $(TH x) $(TH fabs(x))) * $(TR $(TD $(PLUSMN)0.0) $(TD +0.0) ) * $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) ) * ) */ real fabs(real x) @safe pure nothrow; /* intrinsic */ /********************************** * Rounds x to the nearest integer value, using the current rounding * mode. * If the return value is not equal to x, the FE_INEXACT * exception is raised. * $(B nearbyint) performs * the same operation, but does not set the FE_INEXACT exception. */ real rint(real x) @safe pure nothrow; /* intrinsic */ /*********************************** * Building block functions, they * translate to a single x87 instruction. */ real yl2x(real x, real y) @safe pure nothrow; // y * log2(x) real yl2xp1(real x, real y) @safe pure nothrow; // y * log2(x + 1) unittest { version (INLINE_YL2X) { assert(yl2x(1024, 1) == 10); assert(yl2xp1(1023, 1) == 10); } } /************************************* * Round argument to a specific precision. * * D language types specify only a minimum precision, not a maximum. The * `toPrec()` function forces rounding of the argument `f` to the precision * of the specified floating point type `T`. * The rounding mode used is inevitably target-dependent, but will be done in * a way to maximize accuracy. In most cases, the default is round-to-nearest. * * Params: * T = precision type to round to * f = value to convert * Returns: * f in precision of type `T` */ @safe pure nothrow T toPrec(T:float)(float f) { pragma(inline, false); return f; } /// ditto @safe pure nothrow T toPrec(T:float)(double f) { pragma(inline, false); return cast(T) f; } /// ditto @safe pure nothrow T toPrec(T:float)(real f) { pragma(inline, false); return cast(T) f; } /// ditto @safe pure nothrow T toPrec(T:double)(float f) { pragma(inline, false); return f; } /// ditto @safe pure nothrow T toPrec(T:double)(double f) { pragma(inline, false); return f; } /// ditto @safe pure nothrow T toPrec(T:double)(real f) { pragma(inline, false); return cast(T) f; } /// ditto @safe pure nothrow T toPrec(T:real)(float f) { pragma(inline, false); return f; } /// ditto @safe pure nothrow T toPrec(T:real)(double f) { pragma(inline, false); return f; } /// ditto @safe pure nothrow T toPrec(T:real)(real f) { pragma(inline, false); return f; } @safe unittest { // Test all instantiations work with all combinations of float. float f = 1.1f; double d = 1.1; real r = 1.1L; f = toPrec!float(f + f); f = toPrec!float(d + d); f = toPrec!float(r + r); d = toPrec!double(f + f); d = toPrec!double(d + d); d = toPrec!double(r + r); r = toPrec!real(f + f); r = toPrec!real(d + d); r = toPrec!real(r + r); // Comparison tests. bool approxEqual(T)(T lhs, T rhs) { return fabs((lhs - rhs) / rhs) <= 1e-2 || fabs(lhs - rhs) <= 1e-5; } enum real PIR = 0xc.90fdaa22168c235p-2; enum double PID = 0x1.921fb54442d18p+1; enum float PIF = 0x1.921fb6p+1; static assert(approxEqual(toPrec!float(PIR), PIF)); static assert(approxEqual(toPrec!double(PIR), PID)); static assert(approxEqual(toPrec!real(PIR), PIR)); static assert(approxEqual(toPrec!float(PID), PIF)); static assert(approxEqual(toPrec!double(PID), PID)); static assert(approxEqual(toPrec!real(PID), PID)); static assert(approxEqual(toPrec!float(PIF), PIF)); static assert(approxEqual(toPrec!double(PIF), PIF)); static assert(approxEqual(toPrec!real(PIF), PIF)); assert(approxEqual(toPrec!float(PIR), PIF)); assert(approxEqual(toPrec!double(PIR), PID)); assert(approxEqual(toPrec!real(PIR), PIR)); assert(approxEqual(toPrec!float(PID), PIF)); assert(approxEqual(toPrec!double(PID), PID)); assert(approxEqual(toPrec!real(PID), PID)); assert(approxEqual(toPrec!float(PIF), PIF)); assert(approxEqual(toPrec!double(PIF), PIF)); assert(approxEqual(toPrec!real(PIF), PIF)); }